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PK-PD analysis and modelling
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Why modelling ? (*)

• to move from mere description to underlying 
phenomena…
– nature can often be better explained in terms of equations than 

mere description

– this has been essential in physics (think about gravity law, 
radioactive decay, study of electromagnetic field and optics, … 
up to the equivalence of mass and energy…)

• to allow predictions over and beyond what is immediately 
accessible by the experience…

• to generate rules that can be applied widely… 

* CAUTION: modelling in UK English but modeling in US English … 
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In vitro studies
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Response to an antimicrobial
an example with ceftobiprole and S. aureus (one strain) 
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Response to an antimicrobial
an example with ceftobiprole and S. aureus (2 strains) 

Effect-over-time
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Response to an antimicrobial: the model
an example with ceftobiprole and S. aureus (2 strains)
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Response to an antimicrobial: the model
an example with ceftobiprole and S. aureus (multiple strains)
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Analyses

Equation for Prism

Equation:Sigmoidal dose-response
Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)))

;X is the logarithm of concentration. Y is the 
response
;Y starts at Bottom and goes to Top with a sigmoid 
shape

Sigmoidal dose-response: 

also called "4-parameters logistic equation", i.e.
• bottom (Emin)
• Top (Emax)
• EC50
• Hill slope

Sigmoid dose-response
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Analyses
Equation

Equation:Sigmoidal dose-response
Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)))

;X is the logarithm of concentration. Y is the 
response
;Y starts at Bottom and goes to Top with a sigmoid 
shape
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Type of functions

how would 
you fit those 

data

Do not forget to use the appropriate axes !
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Type of functions

This would 
be a good 

model
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Run statistics
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Run tests
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Two examples
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Impact of MIC on the response of 
intracellular bacteria to moxifloxacin
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Lemaire et al. Journal of Antimicrobial Chemotherapy (2011) 66:596-607 
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Colistin and inoculum effect

colistin concentration (mg/L)

low inoculum (∼ in vitro testing)

high inoculum (∼ in vivo

The extent and rate of killing of P. aeruginosa by colistin were markedly 
decreased at high CFUo compared to those at low CFUo.
Bulita et al. Antimicrob. Agents Chemother. (2010) 54:2051-2062 
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In search of models with Prism
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In search of models (including your own)
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In search of models (including your own)
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And here you are …
azithromycin
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In vivo pharmacokinetics
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What is PK analysis and modeling ?

• Noncompartmental analysis
Noncompartmental PK analysis examines total drug 
exposure and looks for function(s) fitting the change 
of concentration over time without reference to where 
the drug may distribute.  

Analysis is simple and does not imply anything 
concerning the actual fate of the drug.

The results are purely descriptive and non-predictive 
unless the function selected is linked to physical 
phenomena (e.g. 1st order kinetics).  
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What is PK analysis and modeling ?
• Compartmental analysis

Describes and predicts the concentration-time 
curve based on the movements of the drug 
between compartments (kinetic or physiological 
model) 

Once the model is indentified, it can be used to 
predict the concentration at any time. 

The model may be (very) difficult to develop

The simplest PK compartmental model is the one-
compartmental PK model with IV bolus administration and 
first-order elimination.

The most complex PK models rely on the use of 
physiological information to ease development and 
validation.
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What is PK analysis and modeling ?

• Compartmental analysis

The simplest PK compartmental model is the one-
compartmental PK model with IV bolus administration and 
first-order kinetic elimination

This can be developed with simple software accessible to lay 
users such as Prism (with some sophistication sometimes)

More complex PK models rely on the use of physiological 
information to ease development and validation.

This requires "high capacity" software that is often impossible 
to use without serious introduction
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Simple compartmental models
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Integrating … (calculus)

26



Nov 2017 PK/PD and modelling

From model to data and finding "best parameters" with 
a computer (curve fitting) 

• choose (or enter) your equation
• enter your data
• enter initial parameter values 

(best estimate; optional but useful)
• the computer will then

– compare equation-based curve to actual data
– modify parameters by successive iterations 

until a "best" fit is obtained …
– the limit is the number of iterations  

numerical 
integration

27



Nov 2017 PK/PD and modelling

From data to model with a computer (no calculus)
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Example of monocopartmental analysis … (*)

equation: C = C0.e-kt

theoretical curve

Exponential-decay (1 compartment)
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* this analysis and the following ones concern ceftazidime IV
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Fitting to ideal population data (*)
Ceftazidime: ideal patients
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Ideal population: tests for 95 % CI
Ceftazidime: ideal patients
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Ideal population: residuals

ideal-valuesNonlin fit of ideal-valuesData Table-1:Residuals
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Real population (*)
ceftazidime: real population
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* data from several patients 
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Real population: 95 % CI 
ceftazidime: real population
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Real population: residuals
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Real population: residuals 

Ideal population: Residuals

0 1 2 3 4 5 6 7
-35

-25

-15

-5

5

15

25

35

time (h)

re
si

du
al

s

35



Nov 2017 PK/PD and modelling 36

More complex models: accumulation / decay 

equation: C = D/Vd x ka/(ka-ke) [e-ket – e-kat]

theoretical curve

Bateman function
(applied to ceftazidime)
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In search of more complex models with Prism
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 Ceftazidime with Bateman function
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Accumulation / decay with Prism … (*)

equation: C = D/Vd x ka/(ka-ke) [e-ket – e-kat]

real data

R2 = 0.57
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Examples d'analyse monocompartimentale … (*)

equation: C = D/Vd x ka/(ka-ke) [e-ket – e-kat]

 Ceftazidime with Bateman

0 1 2 3 4 5 6 7
0

25

50

75

100

Prism 
has a 

problem 
here !
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When the data become really too complex…

40



Nov 2017 PK/PD and modelling

The Mixed non-lin approaches

• A mixed model is a statistical model containing both 
fixed effects and random effects. 

• These models are useful in a wide variety of disciplines 
in the physical, biological and social sciences. 

• They are particularly useful in settings where repeated 
measurements are made on the same statistical units 
(longitudinal study), or where measurements are made 
on clusters of related statistical units. 

• Because of their advantage in dealing with missing 
values, mixed effects models are often preferred over 
more traditional approaches such as repeated measures 
ANOVA.

41
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The Mixed non-lin approaches
Different softwares, but all working by numerical integration based on pre-defined models

42



Exemples avec la témocilline
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Temocillin in a nutshell

• Temocillin or 6-α-methoxy-ticarcillin
• Registered in 1984 for the first time (Beecham)
• Maintained on the market since 1998 (Eumedica)

– BE, LU, UK and now FR

• Narrow-spectrum antibiotic (Gram-negative oriented)
– Enterobacteriaceae

– B. cepacia

– Neisseria, Haemophilus, Pasteurella, Legionella

– Inactive against most strains of P. aeruginosa, Acinetobacter,
Stenotrophomonas,

– no useful activity against Gram-positive and anaerobes

• Stable to most β-lactamases
– Class A (including ESBL, KPC), class C (AmpC), class D (OXA-1)

– Hydrolysed by OXA-48-like (class D) and class B enzymes (metallo-
enzymes)
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But what if you place the bulky group on the β-lactam ring ?
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Matagne et al. Biochem. J. (1993) 293, 607-411
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Why me and temocillin ? 



As a result …
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Belgian SmPC, last revision 2012; Van Landuyt et al,  AAC 1982; 22:535-40

Susceptible organisms

MIC < 1 mg/L 1 mg/L < MIC < 10 mg/L 10 mg/L < MIC < 100 mg/L
Moraxella catarrhalis
Haemophilus influenzae
Legionella pneumophila
Neisseria gonorrhoeae
Neisseria meningitidis

Brucella abortus
Citrobacter spp.
Escherichia coli
Klebsiella pneumoniae
Pasteurella multocida
Proteus mirabilis
Proteus spp (indole +)
Providencia stuartii
Salmonella Typhimurium
Shigella sonnei
Yersinia enterocolitica

Serratia marcescens
Enterobacter spp

Intrinsically resistant organisms

anaerobes
Gram(+) bacteria
Acinetobacter spp
Pseudomonas aeruginosa

ESKAPE 
pathogens



Chemical stability of temocillin in concentrated 
solutions
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De Jongh et al. Journal of Antimicrobial Chemotherapy (2008) 61:382-388 – Supplementary Material



Comparative chemical stabilities of β-lactams upon storage 
of concentrated solutions at 25 and/or 37°C
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Conclusion Molecule Stability limit 1 reference

good temocillin > 24 h at 37°C 2 De Jongh et al. JAC 2008

aztreonam > 30 h at 37°C Chanteux et al. (abstract)

piperacillin 24 h at 37°C Viaene et al. AAC 2002

weak ceftazidime 24 h at 25°C / 8 h at 37°C Servais et al. AAC 2001

problematic cefepime color appearance within 6 h Baririan et al. JAC 2003

insufficient imipenem < 5 h Viaene et al. AAC 2002

meropenem < 5 h Viaene et al. AAC 2002

doripenem ∼ 6-10 h Berthoin et al. JAC 2010

1 > 90 % of original compound (European Pharmacopoiea) 
2 stable for 3 weeks at 4°C (for home medication) (Carryn et al., J Antimicrob Chemother 2010;65:2045-2046)

JAC: J Antimicrob Chemother
AAC: Antimcrob Agents Chemother



• For β-lactams, 
– only the free fraction is (probably)  active…
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Temocillin pharmacodynamics: the lessons of β-
lactams



Exemple #1 (très court):
bolus et infusion continue
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Application to clinical trials (ICU patients)
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De Jongh et al, JAC 2008; 61:382-8

2 g q12 h

LD: 2 g; CI 4g/24h

MIC90

MIC90
PK/PD Bkpt 8-16 mg/L

Monte Carlo simulation

MIC90

PK/PD 
target



Exemple #2 (plus long): 
patients de soins intensifs
avec données manquantes
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Temocillin project (full)
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Outputs: individual curves

24 26 28 30 32
0

100

200
2

24 26 28 30 32
0

50

100

150
3

24 26 28 30 32
0

100

200
4

24 26 28 30 32
0

100

200

5

55



Nov 2017 PK/PD and modelling

Outputs: spaghetti plot (*)
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Total number of subjects:      4
Average number of doses per subject:      1
Total/Average/Min/Max numbers of observations:       15     3.75        3        4

* not noodles !
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Outputs: population curves
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Outputs: population

24 25 26 27 28 29 30 31 32 33
-100

-50

0

50

100

150

200

250

300

TIME

D
V

 

 
Percentile 90 : Obs.
Percentile 50 : Obs.
Percentile 10 : Obs.
Percentile 90 : 90% CI
Percentile 50 : 90% CI
Percentile 10 : 90% CI
Outliers
Outlier (area)

58



Nov 2017 PK/PD and modelling

Outputs: observations vs. predictions
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Outputs: residuals
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Exemple #3 (long): 
volontaires vs soins intensifs
et impact de la fraction libre
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Cette partie est reprise du travail de Thèse en cours
de Mr Perrin Ngougni-Pokkem
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 There is growing evidence that standard 
antibiotic regimens may not provide adequate 
drug concentrations … 

J.W. Mouton et al: Int J Antimicrob Agents. 2002 Apr;19(4):323-31.
Roberts et al, Br J Clin Pharmacol. 2012;73:27-36.
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Critically ill patients

Pharmacokinetic 
alteration

A. Abdulla et al: University Medical Center Rotterdam; eposter 069; ECCMID 2017 
Hosthoff et al, Swiss Med Wkly. 2016;146:w14368
Roberts JA, Lipman J. Clin Pharmacokinetic 2006; 45 (8): 755-73

RRT: renal replacement therapy
ECMO: extra corporeal membrane oxygenation 

Hyperdynamic states
Increased cardiac out, 
and clearance
Decreased plasma concentrations

Altered fluid balance / 
Altered protein binding
Increased volume of distribution
Decreased plasma concentrations

Renal and hepatic impairment
Decreased clearance
Increased plasma concentrations

Organ support (RRT/ECMO)
Increased volume of distribution /
clearance
Increased/decreased plasma 
concentrations

Critically-ill patients
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Consequences of PK alteration

Critically ill patients

Pharmacokinetic 
alteration

underdosing

Therapeutic failure/
antibiotic resistance

overdosing
Therapeutic 

antibiotic 
concentration  

toxic effects Therapeutic 
success

A. Abdulla et al: University Medical Center Rotterdam; eposter 069; ECCMID 2017 
Hosthoff et al, Swiss Med Wkly. 2016;146:w14368
Roberts JA, Lipman J. Clin Pharmacokinetic 2006; 45 (8): 755-73

Variability in 
antibiotic 

concentration
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The main objectives

• Current literature data are based mainly on TOTAL temocillin concentrations

• Only the free concentration is active !
• Concentration in the infected tissue is important !

Part 1
Pilot 
study

Population Pharmacokinetic Analysis and 
Protein Binding Characteristics of Free and total 

Temocillin concentrations in Plasma of Healthy Volunteers and patients 
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Design of the in vitro study 

 Bound concentration vs free concentration of temocillin in plasma

 Free Fraction at a given total concentration vs protein concentrations
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Temocillin plasma protein binding In vitro study
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Free fraction vs total concentration of temocillin
in plasma for 4 healthy donors (D) compared with

5 patients donors (P) in vitro study

D1
D2
D3
D4

P1
P2
P3
P4
P5

total concentration (mg/L)

fr
ee

 fr
ac

tio
n(

%
)

For the patient donors 
 High free fraction up to 65%
 Free fraction which increases with the total 

concentration  
 High variability between the patient donors.

For the healthy donors, except D4 
 Low free fraction between 5 to 8%
 Free fraction which is not influenced by the 

total concentration
 Low variability between the healthy donors

D4: 57.03 g/L
D1: 71.75 g/L
D2: 84.91 g/L
D3: 70.55 g/L

Plasma total protein level (mg/L)
Reference range : 65-85g/L

P1: 52.89 g/L
P2: 48.34 g/L
P3: 61.17 g/L
P4: 55.31 g/L
P5: 55.53 g/L
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Michaelis-Menten fitting of temocillin protein binding

 Plasma protein binding 
of temocillin is saturable

 Maximum binding is lower 
in patients

Bound concentration vs free concentration of temocillin in plasma
In vitro study
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Design of the clinical study: « Phase1 » 

 8 healthy volunteers. 

 Single dose of 2g TMO in 40 min infusion; IV administration.

 Blood sampling: 40min, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12h.

 Study of the relationship between free fraction of temocillin 
vs  its total concentration.

 Study of the relationship between bound concentration of 
temocillin vs  free concentration.

Principal Investigator according to Austrian 
drug law
Markus Zeitlinger,MD
Department of clinical Pharmacology,
Medical University of Vienna Graph Pad 4 software



70Nov 2017 PK/PD and modelling

Temocillin plasma protein binding 
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V1 = 73.58g/L
V2 = 77.45g/L
V3 = 66.16g/L
V4 = 74.08g/L
V5 = 72.45g/L
V6 = 64.50g/L
V7 = 65.25g/L
V8 = 69.45g/L

Plasma total protein level
Reference range:

65-85g/L

Mean total concentration (mg/L)
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 Low free fraction (3-8%) for total concentrations
below 150 mg/L, and increase in free fraction up
to 20% for higher total concentrations

Free fraction vs total concentration of TMO in plasma for 8 healthy volunteers (V) in 
vivo study compared with healthy donors (D) 

in vitro study
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Michaelis-Menten fitting of temocillin protein binding

Bound concentration vs free concentration
 of temocillin in plasma
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 Protein binding saturation observed
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Michaelis-Menten fitting of temocillin protein binding

Bound concentration vs free concentration
 of temocillin in plasma
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 Lower Bmax for patients !

Comparison of plasma protein binding in healthy volunteers (V), 
healthy donors (D) and patient donors (P)

 Similar protein binding saturation 
observed
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PK modeling approaches

 “Data-rich” situation
 Simple to implement
Individual analyzes in 
descriptive statistics

Subject 1

Subject 2

Subject N

Adapted from I.Delattre. 2012
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Plasma total and free concentration versus time
Pharmacokinetic profile of free and total concentration : individual data

 Free concentration decreases with the total concentration
 Important variability in the pharmacokinetic profiles between 

the volunteers
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Comparison of pharmacokinetic parameters (free vs total)

Mean and IC95% of pharmacokinetic parameters of free and total TMO 

p=0.07
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 The half-life of the free temocillin has an 
important numerical effect; But not significant

P<0.0001
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 The clearance of the free temocillin is very high 
compared to the total

P<0.0001
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 The volume of distribution of the free 
temocillin is very high compared to the total

t1/2 = 0.693 Vd / Cl 
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1. Structural pharmacokinetic model 

This PK profile suggests that the kinetics of the TMO is Bi-compartmental

Intravenous administration of 2 g of TMO
Plasma free concentration versus time
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Distribution and
elimination phase

Elimination phase

Visual evaluation of pharmacokinetic profile
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1. Goodness-of-fit plot
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 Mono compartmental model tested 
without covariate
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 Bi-compartmental model tested 
without covariate

 The correlation is better in this case 
and with less variability
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1. Goodness-of-fit plot

Bi-compartmental model + Proportional residual error model 
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P=0.002WRE vs. TimeWRE vs. Cpred

 Bi-compartmental model tested 
without covariate
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Shapiro-Wilk. 
P=0.214WRE vs. TimeWRE vs. Cpred

 Residues should be centered on 0
 95% of the population residues should 

be between approximately -2 and 2
 Residue distribution should be normal
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2. Covariate model
 Relevant physiological, biological and demographic parameters that could change 

the pharmacokinetic parameters

 Make it possible to explain the inter and / or intra-individual variability

Parameter Mean (sd) Range
Age (yr) 32.9 (12.1) 23.0-53.0
Weight (kg) 81.9 (10.9) 70.2-105.6
Height (m) 1.8 (0.1) 1.7-1.9
BMI (kg/m2) 24.4 (2.9) 20.7-28.9
GFR (mL/min)
(Cockcroft-Gault)

135.7 (16.1) 108.2-153.4

ASAT (U/L) 23.8 (4.5) 14.0-30.0
ALAT(U/L) 30.1 (9.2) 18.0-45.0
LDH(U/L) 158.8 (28.4) 143.0-195.0
Albumin (g/L) Not analyzed
Total protein (g/L) 70.4 (4.4) 64.5-77.5

Influence volume of 
distribution and 
clearance

Variable protein 
binding (-->93 %)

Renal excretion 
(80% found in the 
urine in 24h)
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Validation population pharmacokinetic final model

Internal Validation: Monte Carlo simulations 

• Simulated profiles (n=1000) compared to observed data.

• The observed concentrations should be distributed 
homogeneously around the median of the simulated 
concentrations

• Less than 5% of observed concentrations must be outside the 5th 
and 95th percentiles of the simulated concentrations

External Validation
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Internal Validation: Visual Predictive Checks (VPC). 
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Temocillin pharmacodynamic targets

As every β-lactam, temocillin is 
– bactericidal
– time-dependent 

(activity is driven by the time during which the drug plasma free concentration 
remains above the minimum inhibitory concentrations (MIC)) 

 40% of time > MIC is enough for bacteriostatic activity
 acceptable for non-immunocompromised patients

 70% of time > MIC is recommended
 for immunocompromised patients

 100% of time > MIC is suggested 
 For critically-ill patients
this could not only maximize efficacy but also minimize emergence of resistance

Craig WA Diagn Microbiol Infect Dis. 1995;22:89-96. PMID: 7587056.

Delattre IK et al For submission to Expert Review on Antiinfective Therapy as Special Report



83Nov 2017 PK/PD and modelling

Probability of Target Attainment (PTA) of plasma free temocillin concentrations

For non-immunocompromised patients
Target: fT > BSAC breakpoint = 8 mg/L of 40% of the time, based on a mean free 
fraction of 6.0 ± 1.4% (mean of values observed for total concentration < 150mg/L),   

P
TA

Target concentrations  (mg/L)Standard dosing 
(2g/12h)
PTA = 0

newly proposed dosing 
(2g/8h)

PTA = 0.5



84Nov 2017 PK/PD and modelling

For non-immunocompromised patients
Target: fT > BSAC breakpoint = 8 mg/L of 40% of the time, based on a mean free 
fraction of 13.0 ± 4.0% (mean of values observed for total concentration > 150mg/L),   

P
TA

Target concentrations  (mg/L) newly proposed dosing 
(2g/8h)
PTA = 1

Standard dosing 
(2g/12h)

PTA = 0.99

Probability of Target Attainment (PTA) of plasma free temocillin concentrations



85Nov 2017 PK/PD and modelling

P
TA

Target concentrations  (mg/L)

For critically-ill patients
Target: fT > BSAC breakpoint = 8 mg/L of 100% of the time, based on a mean free 
fraction of 35.0 ± 12.3% (mean of values observed for patient),   

Standard dosing 
(2g/12h)

PTA = 0.7

newly proposed dosing 
(2g/8h)
PTA = 1

Probability of Target Attainment (PTA) of plasma free temocillin concentrations
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MIC distributions of E. coli : ESBL/AmpC (n=1155) vs non-ESBL/AmpC (n=1473)

Source: Eumedica (data on file)

Which are the actual (and recent) observations ? 
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